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Abstract. We study random walks on the dilute hypercube using an exact enumeration Master equation
technique, which is much more efficient than Monte Carlo methods for this problem. For each dilution
p the form of the relaxation of the memory function q(t) can be accurately parametrized by a stretched
exponential q(t) = exp(−(t/τ )β) over several orders of magnitude in q(t). As the critical dilution for
percolation pc is approached, the time constant τ (p) tends to diverge and the stretching exponent β(p)
drops towards 1/3. As the same pattern of relaxation is observed in a wide class of glass formers, the fractal
like morphology of the giant cluster in the dilute hypercube appears to be a good representation of the
coarse grained phase space in these systems. For these glass formers the glass transition may be pictured
as a percolation transition in phase space.

PACS. 61.43.-j Disordered solids – 61.43.Fs Glasses – 64.60.Ht Dynamic critical phenomena

Complex systems generally show strongly non-exponential
dynamics. In 1854 R. Kohlrausch used a phenomenological
expression q(t) = C exp(−(t/τ)β) to parametrize polar-
ization decay data in Leiden jars [1]. Rediscovered more
than a century later, again in the context of dielectric
relaxation [2], this “stretched exponential” or KWW ex-
pression has become ubiquitous in phenomenological anal-
yses of relaxation data, experimental or numerical [3,4].
There has always been a sceptical school of thought which
considers that in the context of real glasses the stretched
exponential expression is nothing more than a convenient
fitting function of no fundamental significance. Thus it
has often been assumed that the KWW form is due to a
sum over individual elements (atoms, spins, ...) each relax-
ing independently and exponentially with an appropriate
relaxation time distribution. Analytical arguments have
been given as to why certain model systems show KWW
relaxation [5,6]; for instance in trap models which have
been studied intensively [3,6,7] individual non-interacting
walkers fall into random traps, giving stretched exponen-
tial decay of the number of surviving walkers in the appro-
priate limits. The connection between these models and
the physical situation for relaxation in strongly interact-
ing systems such as glasses or spin glasses where elements
are all intimately interconnected is not at all obvious, and
in addition the models do not give predictions concerning
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the temperature dependence of the time scale or of the
stretching parameter β.

An alternative mechanism for KWW relaxation can
be provided by a closed space fractal like topology ap-
proach. A random walk in a normal Euclidean flat space
leads to the standard diffusion equation 〈r2(t)〉 ∝ t in
any dimension. For random walks on a critical percola-
tion cluster inscribed in a Euclidean space, which is a
fractal, diffusion is sub-linear: 〈r2〉 ∝ tβ , with β values
smaller than 1 which have been estimated numerically in
each dimension and which become exactly equal to 1/3 at
and above the upper critical dimension d = 6 [8]. A ran-
dom walk on a circular loop, which is a closed space, gives
a pure exponential decay of the average autocorrelation
function, 〈cos(θ(t))〉 ∝ exp(−t/τ) where θ(t) is the angle
between the vector corresponding to the initial position
of the walker at time zero and the vector corresponding
to the position at time t. It was conjectured [9] that for
purely geometrical reasons, for random walks on perco-
lation clusters inscribed in closed sphere-like spaces the
analogue to the sub-linear diffusion would be the stretched
exponential. In particular for the dilute hypercube in high
dimension which has sphere-like topology, random walks
on the percolation cluster would lead to stretched expo-
nential relaxation with a limiting value of β = 1/3 at
percolation in the infinite dimension limit.

Here we use an exact enumeration Master equation
method which provides numerical results of high precision
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for this problem at high dimension. We find that the
KWW functional form accurately fits data extending over
a very wide range of q(t) values (from about 0.5 to 10−5),
and that the effective β tends to 1/3 as the fraction of oc-
cupied sites p tends to the percolation value, as predicted.
The accuracy of the agreement between the data and the
stretched exponential fits at moderate and long times ap-
pear to be limited only by the dimension of the system
studied which is high but not infinite, and by the number
of realizations which were sampled. These results indicate
to much higher precision than before that the stretched
exponential is not merely an arbitrary empirical fitting
function; we conjecture that it is exact for this geometry
in the limit of N going to infinity and p going to pc.

A generic explanation follows for the stretched expo-
nential form of relaxation observed as the glass transition
is approached in real glassy systems, if it is hypothesised
that in such systems, just above the glass transition the
“rough landscape” topology of phase space is the closed
space analogue of a fractal. (Fractals can be defined pre-
cisely in Euclidean space; in real situations, structures
are generally only fractal over a limited range of length
scales. For want of a better expression, we will use the
term “fractal-like” for the analogous structures with com-
plex topology in closed spaces, in particular close to the
percolation transition in the hypercube.)

Imagine a hypercube in high dimension N with a frac-
tion p of its sites occupied at random. Clusters are defined
as sets of occupied sites having one or more occupied sites
as neighbors. It has been proved rigorously [10] that there
is a critical “percolation” concentration pc given by

pc = σ +
3
2
σ2 +

15
14
σ3 + . . . (1)

where σ = 1/(N − 1). For p > pc there exists a giant
spanning cluster while for p < pc there exist only small
clusters with less than N elements.

Now consider the relaxation due to random walks on
the giant cluster of sites, a strictly mathematical problem
which apparently has not been solved analytically. For a
given realization of the partially occupied hypercube with
p > pc we can define a random walk among sites on the
giant cluster. The walker starts at any such site i0. A
site j near neighbor to i0 is drawn at random. If j is on
the giant cluster (and so “allowed”) the walker moves to
j. Otherwise the draw is repeated until an allowed site
is found. Each draw, successful or not, is considered one
time step. The procedure is iterated.

We identify the distance Hik between sites i and k
on the hypercube with the Hamming distance, which is
just the minimal number of moves needed to go from i
to k on the full hypercube. The value of the normalized
memory function qn(t) after time t for a given walk n
starting from iO and arriving at kn after time t can be
defined by (N−2Hikn(t))/N . The definition is identical to
that of the autocorrelation function relaxation for the N
Ising spins. The value averaged over many walks will go
to zero at long t.

Relaxation in the dilute hypercube has already been
studied numerically by Monte Carlo techniques [11,12]. In

the brute force Monte Carlo approach taking a mean over
independent walks, the statistical noise becomes impor-
tant at long t, limiting accuracy [12]. The exact enumer-
ation considers a Master equation to study the time evo-
lution of the entire probability distribution for the walker
after t steps, ρ(t), which we will call the state vector.
Each vertex of the hypercube is associated to an integer
0 ≤ i ≤ 2N−1. At t = 0 the walker is localized on a single
summit i0 on the hypercube; the probability distribution
then diffuses over the system at each time step following
the equation:

ρi(t) = ρi(t− 1)

+
∑
j

[ρi(t− 1)W (j → i)− ρj(t− 1)W (i→ j)] (2)

where W (i→ j) represents the transition probability that
is given by:

W (i→ j) =


1
N

if i and j are allowed first neighbours

0 otherwise.
(3)

Equation (2) can be rephrased as:

ρ(t) = Fρ(t− 1) (4)

where F is a linear evolution operator. Our numerical al-
gorithm catalogues all sites on the giant cluster for each
particular realization of the hypercube, and then equa-
tion (2) is iterated for one particular starting point. Close
to pc where time scales are long and there are fewer sites,
it is more efficient to diagonalize the evolution operator F .

By explicitly solving the master equation we obtain an
exact result (to within numerical rounding errors) for each
combination of one realization of the hypercube occupa-
tion, and one given starting point on the giant cluster.
There is no statistical “noise” for a given run, and by av-
eraging over a moderate number of independent samples
and starting points a mean q(t) curve can be obtained,
lying very close to the infinite ensemble average even to
long times.

In practice, calculations were done on dimension N =
16 for values of p from 0.5 to 0.073 (which is close to
pc). At least 100 samples were used at each p. N must be
large; the present value was limited by computer memory
considerations. The present data give q(t) values which
have errors of about 10−5 while the Monte Carlo data with
similar computer effort had limiting errors of about 10−2.
(The Monte Carlo data in [12] were taken at dimension
N = 24 rather than 16.)

We expect three relaxation regimes a priori. First,
at short times q(t) must behave as 1 − αt where α is
the probability that a step will be made at a given at-
tempt. Short time decay will thus be exp(−αt); this cor-
responds to the fine-grained structure. Secondly, there will
be the onset of the slow relaxation regime which interests
us and which should extend over a wide range of times
as the system explores the labyrinthine geometry of the
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Fig. 1. Decay of the autocorrelation function q(t) on a log-
log plot for different values of p, as listed in the inset. The
solid lines correspond to stretched exponential fits, with β(p)
and τ (p) as indicated in Figure 4. The error bars correspond
to an estimate of the uncertainty of the points due to limited
sampling.

giant cluster. Finally, for very long t finite size effects
will set in (the number of sites is finite for finite N) and
an ultimate crossover to another exponential regime will
occur.

The numerical data obtained together with the
stretched exponential fits are shown as log q(t) against
log(t) in Figure 1. The normalization parameter C is al-
ways close to 1 and was included to guarantee better fits
at intermediate times. It can be seen immediately that the
fits are of excellent quality.

There are various methods of exhibiting this sort of
data in order to make stringent tests of the functional
form of q(t). For example, Figure 2 shows log[− log q(t)]
against log(t). In this plot perfect pure or stretched expo-
nentials with C = 1 should be straight lines at long t, with
the pure exponential having slope one. For C not strictly 1
the fitting curve bends slightly at short p. The data show
that over a very wide intermediate time regime, at each
p the functional form of q(t) is indistinguishable from a
stretched exponential with a β value which decreases as p
decreases. As we expect, deviations occur at short times
for all values of p, and small deviations can begin to be ob-
served at long times for small values of p where the longest
times scales for the relaxation occur. We show in Figure 3
data for different dimensions, N = 12, 14, to compare with
N = 16. At each value of N the data correspond to p = pc

where pc is the appropriate critical concentration (which
changes with N). It can be seen that the larger N the
later the q(t) curve deviates from the limiting Kohlrausch
straight line, demonstrating that the long time curvature
is a finite size effect. If calculations could be carried out for
much largerN the ultimate deviation from the Kohlrausch
regime would only appear at extremely long times and ex-
tremely small q(t).

For large N and as p approaches pc the time scale τ
tends to diverge and the stretching exponent β tends to
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Fig. 2. A more stringent test of the stretched exponential
behavior of q(t) is the log[− log(q(t))] against log t plot. The
different values of p are listed in the inset. The solid lines corre-
spond to a stretched exponential fit, with β and τ as indicated
in Figure 4. The fitted curves are not linear due to the con-
stant C.

Fig. 3. Plot of log[− log(q(t))] against log t at the critical con-
centration p = pc for three different hypercube sizes: N =
12, 14 and 16. The curves corresponding to smaller samples de-
viate from the stretched behavior (thin straight line) at smaller
times than the curve for the largest size.

near 1/3. This limiting behaviour is consistent with the
prediction quoted above, where the stretched exponen-
tial behaviour and the exponent 1/3 are linked to a frac-
tal like topology for the closed space percolation cluster.
The fact that accurate stretched exponential behaviour
(with β > 1/3) is still observed numerically over long
time ranges at p values higher than pc is a priori un-
expected. In standard Euclidean spaces only local frac-
tal behaviour occurs once p is above the critical value.
However it must be remembered that we are dealing with
very high dimensions where geometry becomes uncon-
ventional – for instance, percolation fractals become self
transparent. Already in the Euclidean case, it would be
of interest to study the high dimensional regime further.
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Fig. 4. Relaxation time τ (p) (circles) and stretched exponen-
tial exponent β(p) (squares) against p. As p → pc, τ diverges
while β(p) approaches 1/3.

The Kohlrausch behaviour for p above pc could be an in-
termediate regime rather than the true asymptotic regime.
The numerics show that if this is the case, the intermedi-
ate regime extends over a wide range in t.

Recent numerical results for random walks on perco-
lation clusters inscribed on hyperspheres of dimension 3
to 8 give accurate confirmation of stretched exponential
decay behaviour at the critical percolation concentration
with the stretching exponent equal to the Euclidean sub-
linear percolation cluster random walk exponent for each
dimension [13]. Taken together with the present results
close to the critical concentration for percolation pc, it
can be concluded that random walks on a critical perco-
lation cluster inscribed in a space of spherical topology
indeed give precisely stretched exponential decays.

The initial motivation of this work was to try to pro-
vide a generic explanation for the ubiquitous observation
of stretched exponentials in experimental and numerical
relaxation data. We can compare heuristically the model
data with examples of numerical and experimental relax-
ation results in complex systems above the glass transi-
tion. The autocorrelation function relaxation in the 3d
bimodal Ising spin glasses has been studied numerically
to high precision [15]. The long time relaxation function
above the ordering temperature is of stretched exponential
form with an exponent β which tends to 1/3 within numer-
ical accuracy at the temperature at which the times scale
τ diverges. Relaxation in other spin glasses are of the same
limiting form, independently of space dimension or of the
type of spin-spin interaction [16]. Spin glasses and fully
frustrated models return to simple exponential relaxation
behaviour above the Coniglio-Klein (or Kastelyn-Fortuin)
temperature which is well above the ordering tempera-
ture [17]. This pattern of behaviour is not restricted to
spin glasses. For instance the relaxation of a colloid glass
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Fig. 5. Experimental data from light scattering measurements
on a polystyrene colloid, taken from Bartsch et al. (Ref. [18]).
In the publication the relaxation curves were parametrized us-
ing the KWW form. The relaxation was measured as a function
of the colloid volume fraction φ. The critical value φc where a
gel forms is about 0.69.

former [18], a system having an entirely different micro-
scopic mechanism for glassyness, again shows stretched
exponential decay with β tending to 1/3 as τ diverges with
concentration because of steric hindrance, and a pure ex-
ponential decay at small concentrations, as shown in Fig-
ure 5. A large number of polymer glass formers also show
a similar characteristic relaxation pattern [19].

What could the logical connection be between the di-
lute hypercube random walk and relaxation in glasses?
The ensemble of all possible configurations of a thermo-
dynamic system form a high dimensional closed space.
The available phase space at temperature T can be con-
sidered at the microcanonical level as the set of config-
urations having the appropriate energy for that temper-
ature, E(T ). This available phase space becomes sparser
as T decreases. Phase transitions correspond to discrete
qualitative changes in the topology of the microcanoni-
cal phase space with temperature [20]; thus at a standard
ferromagnetic second order transition Tc the phase space
splits into two. Also quite generally, relaxation is just the
consequence of the random walk of the configuration point
of the whole system in the available phase space, and its
form is necessarily a reflection of the morphology of this
phase space. Explicitly the N dimension hypercube is ex-
actly the total phase space of an N spin Ising model; the
spin by spin relaxation of a coupled N spin Ising system
can be mapped directly onto a random walk of the config-
uration point on the thermodynamically available sites of
the N dimension hypercube [15]. For systems with more
complicated total phase spaces than the hypercube, the
same argument applies mutatis mutandi.

In all relaxation models including the present one the
shape of the decay can be related formally to a particular
distribution of relaxation times of independent modes of
the system. The present model is not in the class of models
with single spins relaxing independently and exponentially
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at different rates, and the initial site is not a privileged
configuration. All the relaxations of the single spins are
coupled together implicitly through the complex “rough
landscape” topology of the giant cluster.

As the spins are strongly interacting, it is essential not
to confuse the relaxation modes with the individual ele-
ments (spins) which are relaxing. Thus for the present cal-
culations the effective number of spins is small (N = 16)
but the number of independent modes is much bigger: it is
equal to the number of eigenstates of F , i.e. to p2N , typi-
cally of the order of 104 modes for N = 16 (the value varies
with p). The mode spectrum is discrete and by definition
has upper and lower limits. As we have discussed above,
for times less than the minimum characteristic time (high-
est mode frequency), relaxation will be exponential, and
for times much longer than the (N and p dependent) max-
imum characteristic time (lowest mode frequency) there
must again be a second exponential regime, the finite size
limit discussed above. The short time regime can be seen
on all the numerical curves, for q(t) values above about
0.5; the beginning of the long time tendency to exponen-
tial decay is only visible for the lowest values of p where
the number of modes is smaller and where the calculations
have been taken to very long t.

We argue that the “rough landscape” of complex sys-
tems takes up a specific closed space fractal like form
above the glass transition, and that the relaxation is a
reflection of this topology. In a sense the present model ex-
presses concretely the physical picture proposed by Palmer
et al. [5] where the relaxation of each element depends
on its instantaneous environment, but in contrast to [5]
the mode relaxation time distribution is not injected “by
hand” but emerges spontaneously as a necessary conse-
quence of the fractal-like closed space topology of the gi-
ant cluster, with no adjustable parameters of any kind. It
is important that the present approach not only leads nat-
urally to the stretched exponential functional form, but it
provides an explicit quantitative relation between the time
scale and the stretching. As p drops towards pc the time
scale τ(p) gets progressively longer (a divergence at pc

in the very large N limit). Concomitantly β(p) decreases
from 1 at large p towards a limit of 1/3 at pc, (Fig. 4). Both
effects reflect the increasing sparseness and complexity of
the giant cluster with decreasing p. The limiting value of
1/3 for β when τ diverges is a consequence of the “frac-
tal like percolation cluster” topology of the sparse giant
cluster [9].

The question may be raised as to whether the stretched
exponential is the true limiting long time relaxation form
in spin glasses. It has been stated that the long time
relaxation should be dominated by large, compact, non-
frustrated, isolated clusters of spins for temperatures be-
low the Griffiths transition [21–23], but no numerical ev-
idence has ever been found for the onset of this regime
[15,22,24]. The probability of encountering large unfrus-
trated clusters in samples of the sizes studied numerically
can be estimated and is microscopically small; thus any
cluster-dominated regime would correspond to tiny values

of q(t) in huge samples, and so is unattainable in practice
for numerical or experimental studies.

A number of experimental studies [25–27] conclude
that there is spatial heterogeneity in the relaxation
of glasses. As is pointed out particularly clearly by
Kirchner et al. [26], above the freezing temperature any
such heterogeneity must be purely dynamic for systems
with self induced disorder, such as supercooled liquids.
Cugliandolo and Iguain [28] show that responses very sim-
ilar to those of the experimental results can be generated
from numerical studies of models with no spatial struc-
ture, so the interpretation of experiments in terms of spa-
tial heterogenetity must in any case be treated with cau-
tion. In systems with quenched-in disorder such as spin
glasses, simulations show that there is some spatial het-
erogeneity of relaxation times, but that the relaxations
of individual spins are generally strongly non-exponential
[29,30]. In the phase space approach, local relaxation rates
are expected to be heterogeneous in the sense that at
a given time some sites are relaxing faster than others;
however the sites that are relaxing fast at one time may
well be relaxing slowly at a later time so this hetero-
geneity is intrinsically dynamic. Even in the presence of
some quenched in static inhomogeneity, heterogeneity can
be expected to be mainly dynamic and the argument for
an overall fractal phase space morphology leading to the
stretched exponential global relaxation is not affected.

In conclusion, using a Master equation approach for
random walks on the dilute hypercube, high precision re-
sults have been obtained compatible with the stretched
exponential being the exact functional form for the au-
tocorrelation function relaxation at the approach to the
percolation concentration in the limit of infinitely high
dimension. The stretched exponential decay is clearly re-
lated to the complex topology of the percolation cluster
in closed space, which we have referred to as fractal like.
The striking resemblance between the dilute hypercube
relaxation pattern and the relaxation actually observed
in numerical studies of spin glasses or in experiments on
glasses above the freezing temperature strongly suggests
that in the physical systems the phase space has an anal-
ogous structure in this temperature range. Thus, at short
times (fine grained phase space) the relaxation will depend
on the details of the physics of each system, but at mod-
erate and long times (coarse grained phase space) these
systems all appear to have the same specific percolation-
fractal-like phase space topology with its characteristic re-
laxation signature, the precursor of a phase space perco-
lation breakdown at the glass transition.
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